Question. 18. A sphere has center in the first octant and que? 17. is tangent to each of the three coordinate planes. The distance from the origin to the sphere is 3-J3 units. What is the equation of the sphere?

Sol? Let $P(x_0, y_0, z_0)$ and r denote the center and radius of the sphere s, respectively. \sharp In order for s to be tangent to the πy -plane, the distance $|z_0|$ from $P(x_0, y_0, z_0)$ to the πy -plane must equal r. Since $P(x_0, y_0, z_0)$ is in the first octant, we conclude that $z_0 = |z_0| = r$.

Similarly, $x_0 = y_0 = x$ and the center of s is P(r, r, r).

Therefore the distance from the origin to the center P(x,r,r) of s is = $\sqrt{x^2 + x^2 + x^2} = \sqrt{3}x$

Given that the distance from origin to the sphere S is = $3-\sqrt{3} = \sqrt{3}(\sqrt{3}-1) = (1)$

While the distance from oxigine to spheres is = \(\J3 \ r - r \)

Equating (1) & (2) gives (53-1) x = 53 (53-1) =) [x = 53]

Therefore the coordinates of the center $P(x,x,x) = P(\sqrt{3},\sqrt{3},\sqrt{3})$ and eq. of sphere is $(x-\sqrt{3})^2+(y-\sqrt{3})^2+(z-\sqrt{3})^2=3$.