Open and Closed Sets
Definition 1.

Let A be a subset of a metric space (X,d). A point x € X

5 called an interior point of A if there exists an open ball with centre x

contaned n A, 1e,,

x e S(x, r) € A ftor some r > 0,

or equivalently, 1f x has 2 neighbourhood contained in A.

The set of all interior Points of A is called the interior of A and is denoted
cither by Int(4) or A",
Int(A) = A’ = {x € A:§[x,r) C A for some r > 0},

Observe that Int(A) C A.

Result 1.

Let A be a subset of a metric space (X, d). Then

(i) A” is an open subset of A that contains every open subset of A;
(ii) A is open if and only if A = A",



Proof. (i) Let x € A be arbitrary. Then, by definition, there exists an open ball
S(x, r) C A. But S(xr) being an open set (see Theorem 2.1.5), each point of it is the
centre of some open ball contained in §(xr) and consequently also contained in A,
Therefore each point of §(xr) is an interior point of A, Le., S(x, r} C A°. Thus, xis
the centre of an open ball contained in A°. Since x € A” is arbitrary, it follows that
each x € A” has the property of being the centre of an open ball contained in A”.
Hence, A" is open.

It remains to show that A” contains every open subset G C A. Let x € G. Since G
is open, there exists an open ball S(x, 1) C G C A. So x € A”, This shows that
1€ G= xe A, Inother words, G C A°,

(11) 1s immediate from (1), [

Result 2.
Let (X, d) be a metric space and A, Bbe subsets of X. Then

(i)ACB= A" CB
(ii) (AN B)" = A" N B;
(m) (AUB)" 2 A"U B

Proof. (1) Let x € A", Then there exists an r > 0 such that 5(x, r) C A. Since A C B,
we have 5(x,r) C B, 1.e, x € B,

M)ANBC Aaswell as AN B C B. It follows from (1) that (AN B)” C A" as well
as (AN B)° C B", which implies that (AN B)” C A" N B". On the other hand, let
x € A"N B . Thenx € A" and x € B". Therefore, there exist r, > 0 and r, > 0 such
that S(x,n)CA and S(x,r) C B. Let r=min{r,r}. Clearly, r>0 and
Slx,r) CANB, 1e, x€ (AN B)",

(1) AC AU B as wellas BC AU B. Now apply (1). ]



Note.

The following example shows that (A U B)” need not be the same as

A"UR, Inded, if A=[0,1] and B=]1,2], then AUB=10,2]. Since
A" =(0,1),8"=(1,2) and (AUB)" =(0,2), we have (AUB)" #A°UF..

Definition 2.

Let X be a metric space and F a subset of X. A point x € X is

called a limit point of Fif each open ball with centre x contains at least one point of
F different from x, Le,

(Sxr) = {xf)NF£ 2.
The set of all imit points of Fis denoted by F' and 15 called the derived set of F

Examplel.
(1) The subset F = {1, 1/2, 1/3,...} of the real line has 0 as a

limit point; in fact, 0 is its only limit point. Thus the derived set of Fis {0}, Le,
Fr =10}

(11) The subset Z of integers of the real line, consisting of all the integers, has no
limit pount, Its denved set Z'is 7.

(111) Each real number s a limit point of the subset of rationals: (f =R.
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(iv) If (X, d) is a discrete metric spaceand F C X, then F has no limit points,

since every open ball of radius 1 consists only of the centre.

Result 3.
Let (X,d) be a metric space and F C X, If xy is a limit point of
F; then every open ball $(xg,r), r >0, contains an infinite number of points of .

Proof. Suppose that the ball §(x;, r) contains onlya finite number of points of £ Let
¥y 1oy - I denote the points of S(xy, r) N F that are distinct from x. Let

b= min{d(p,%), diy,w),....d(y, %)}

Then the ball 5(x;,0) contains no point of F distinct from x;, contradicting the
assumption that x, 1s a limit point of E 0

Result 4.



Let (X, d) be a metric space and F C X. Then a point x; is a

limit point of Fif and only if it 1s possible to select from the set F a sequence of
distinct points Xy, %;,.. ., %,,. .. such that im, d(x,,x) =0

Proof. It lim, dlx, %) =0, where x,%,...,%,... 5 2 sequence of distinct
pomts of F then every ball S(xg, ) with centre %y and radius r contains each
of x,, where nn for some suitably chosen m. As XXy, Xy In F are
distinct, 1t follows that 3(x;, ) contains a point of F different from x5, S0, 1 15 &
limit point of F.

On the other hand, assume that x 15 it point of £. Choose a point 1y € Fn

the open ball §(xq, 1) such that x; 15 different from x;. Next, choose a pomt x, € F
in the open ball §(x;, 1 /2) different from x; as well & from x;; this is possible by

Proposition 2.1.19. Continuing this process in which, a the nth step of the process
We choose a point x, € F in $(x;, |/n) different from x,%,...,%,.,, we have a
sequence {x, | of distinct points of the set F such that hm, d(x, ) =0. [

Definition 3.



A subset F of the metric space (X, d) is said to be closed if it
contains each of its limit points, i, F' C F.

Example.

(1) The set Z of integers is a closed subset of the real line.

(11) The set F={1,1/2,1/3,...,1/n,...} is not closed in R. In fact, F' = {0},
which 1s not contained in F

iy Each subset of a discrete metric space is closed.

Result 5.

Let F be a subset of the metric space (X, d). The set of limit
points of F, namely, F' is a closed subset of (X, d), i.e., (F) C F.

Proof, If F' = (7 or (F')' = (7, then there is nothing to prove, Let ' # (7 and ket
1 € (F)'. Choose an arbitrary open ball §(x, r) with centre xp and radius r. By the
definition of limit point, there exists a point y € F' such that y € §(x, ). If
¢ =r=d(y,x), then S(y, ') contains infinitely many points of F by Proposition
L1.19. But 8(y,7') C S(xg,7) as in the proof of Theorem 2.1.5, So, infinitely many
points of Flie in §(x;,r). Therefore, x; is a limit point of £ Le, x € F'. Thus, F
contains all its limit points and hence F' 15 closed. ]

Result 6.
Let (X, d) be a metric space and let Fy, F; be subsets of X,
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(i) If F, C F,, then F| C F,
(i) (FUR) =F UF,
(i) (RN E) CFENE,.

Proof. The proofs of (1) and (iii) are obvious. For the proof of (ii), observe that
FUE C(FUF), which follows from (i). It remains to show that

(FUF) C F UE.
Let x; € (F, U F,)". Then there exists a sequence {x,}, ., of

00 «— U SB () «— (Ox ““x)p jeyy yons Iy M Ly ur syurod jpounsip

If an infinite number of pomnts x, e n Fy, then x, € F, and, consequently,
%€ F UE. If only a finte number of points of {r,},», e m F, then

€ F; C FI LJF;. We therefore have x; € F{ UFE In either case. This completes
the proof of (1. 0

Definition 4.

Let F be a subset of a metric space (X, d). The set F U F' is called
the closure of F and is denoted by F.
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Thus,

The closureF of F C X, where (X, d) 15 a meric space, is closed.

Proof. In fact,
FY =(FUFY=FU(F)) CFUF =FCF.
Result 7.
(1) Let Fbe a subset of a metric space(X, d). Then Fis closed if and

only if F = F.
(1) If A C B, then A C B.
(m) If A C F and F 1s closed, then A C F.

Proof. (1) If F = F, then 1t follows

that F is closed. On the other hand, suppose that F is closed; then

F=FUF=FCE

It tollows from the above relations that F = F.

Proof of (ii) and (iii) follows from previous results
Result 8.

Let (X, d) be a metric space and F C X. Then the following



statements are equivalent:

(1) x € F;
(1) S(x,£) N F # (7 for every open ball §(x,¢) centred at x;

(1)) there exists an infinite sequence {x,| of points (not necessarily distinct) of F
such that x, — x.

Proof. (i)=(ii). Let x € F. If x € F, then obviously S(x,&) N F # (7. If x ¢ F, then
by the definition of closure, we have x € F'. By definition of a limit point,

(S(x, e\xf) NF # 2

and, a fortior,

S(x, &) NF# .

(i))=(iii). For each positive integer n, choose x, € S(x,1/n)NF. Then the
sequence {x,} of points in F converges to x. In fact, upon choosing n, > 1/,

where ¢ >0 is arbitrary, we have dlx,,x) < 1/n< 1/ng < ¢, ie, x, € S(x, €
whenever n= .

(ii1)=>(1) If the sequence {x,}, ., of points in F consists of finitely many distinct
points, then there exists a subsequence {x,, | such that x,, = x for all k So, x € F.
If however, {x,,=; contains infinitely many distinct points, then there exists a
subsequence {x,, | consisting of distinct points and limy d(x,, x)=0, for

lim, d(x,, x)= 0 Dby hypothesis.
it follows that x= F' C F.
Result 9.



Let Fy, F, be subsets of a metric space (X, d). Then

(1) (RUE)=FUE;
(1) (F,NF,) CF NE.

Proof. We have

which establishes (1). The proof of (i) 1s equally simple

Result 10.

Let (X, d) be a metric space. The empty set & and the whole
space X are closed sets.

Proof. Since the empty set has no limit points, the requirement that a closed set
contain all its limit points is automatically satisfied by the empty set.
Since the whole space contains all points, it certainly contams all its lmit points

(if any}, and s thus closed. ]

Result 11.
Let (X, d) be a metric space and Fbe a subset of X. Then Fis closed
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in X if and only if F* is open in X.

Proof. Suppose F is closed in X. We show that F* is open m X If
F = ((respectively, X), then F* = X (respectively, (/) and it 1s open by Theorem
2.1.7(1); so we may suppose that F # (7 # F*. Let x be a point in F*. Since Fis
closed and x ¢ F, x cannot be a limit point of E. So there exists an r > 0 such that
S(x,r) C F. Thus, each point of F* is contained in an open ball contained in F*.

This means F* is open.

For the converse, suppose [ is open. We show that F is closed. Let
x€X be a limit point of F Suppose, if possible, that x ¢ F. Then x € F,
which 1s assumed to be open. Therefore, there exists r > 0 such that S(x, r) C F,
1€,

Sxr)NF=0.

Thus, xcannotbe a limit point of £ which1sa contradiction. Hence, xbelongsto . [J

Result 12.
Let (X, d) be a metric space and S(x,r) = {y € X:d(y,x)=r}bea
closed ball in X. Then $(x, r) is closed.
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Proof. We show that (§(x, 1)) isopen in X (see Theorem 2.132). Let y € ($(x; )}’
Then d(y,2) > r.1f 1, = dly, ) - 1, then 1, > 0. Moreover, §(y,1) C (1))
Indeed, if 2 € 5(y, ), then

dz,x) zd(y,x) = dly,z) > dyx) =1 =1,
Thus, 2 ¢ §(x, 1), 1, 2€ (S(x, 1))’ ]

Result 13.

Let (X, d) be a metric space. Then

(1) (7 and X are closed:

(1) any Intersection of closed sefs 1 closed;
(11) a fimite umion of closed sets 1s closed.

—

Proof. (i) This follows from above result 10.
(ii) Let {Fy} be a family of closed sets in X and F =), Fa. Then

F is closed if F* is-npen. Since F* = | F: by de I‘Enrgan’s laws, and since
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each I, is open Uu F, is open , by previous result,
Le., F° is open.

(111) This proof is similar to (ii).

Note.

An arbitrary union of closed sets need not be closed. Indeed,

80,1 -1/n), n=2,1s a closed subset of the complex plane, but

US({},I 1) _50,1)
H

n=1

15 1ot closed (because each point zsatisfying |z| = 1 is a limit point of §(0, 1) but is
not contained m S(0, 1)).
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